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How improved scaffold technology can
improve safety and efficacy

Shortcomings Possible solution

O Low tensile strength, low radial * Increase tensile strength, good
force, recoil <> radial force -> thin strut (oriented
O thick strut, wide footprint PLLA, cold worked Magnesium)
* Circular strut
(single monofilament fiber)

* Easy to embed
* Less disturbance of laminar flow

O Quadratic strut
O Difficult to embed
O Disturb laminar flow

O Increase local viscosity and * Use of biodegradable material non-
thrombogenicity thrombogenic: Magnesium WE-43,

O Main determinant of neointimal Proprietary Mg alloy without rare
thickness and Lumen reduction earth elements

O Slow down the cell coverage * Circular strut

O Late structural discontinuity * Faster bioresorption (single
(dismantling) monofilament fiber, Magnesium)



How to increase tensile strength and radial
force by altering molecular orientation of PLLA
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How to increase tensile strength and radial
force by altering molecular orientation of PLLA
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Oriented polylactide, stronger and thinner strut
Reducing the protrusion without increase of recoil

ArterioSorb from Arterius Absorb BVS from Abbott
(Profile: 1.22 mm) (Profile: 1.43 mm)
Protrusion distance: 897 um Protrusion distance: 1509 pm

A: 19.24+4.80 atm

After device deployment After post-dilatation (PD)y. 1545:4 56 atm
Scaffold Device balloon-artery Acute PD balloon-artery Acute
ratio recoil (%) ratio recoil (%)
Arteriosorb-95 (n=25) 1.09+0.11 4.69+7.38 1.11+0.09 2.65+3.81
Xience (n=15) 1.12+0.11 2.7014.52 1.14+0.10 1.061£4.13

Courtesy of Dr. Onuma, Rasha Al-Lamee, Guy Leclerc (AccelLAB, Montreal) 5



Thin struts reduce struts protrusion, very low-shear stress
(dark-blue color), risk of thrombus peri-strut and neointima
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Tenekecioglu E, Torii R, Serruys PW et al. Non-Newtonian pulsatile shear stress

assessment: a method to differentiate bioresorbable scaffold platforms. Eur Heart
J 2017 Sep 1;38(33):2570.
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Low Shear Stress generated by thick protruding strut is
the main determinant of neointimal thickness and Lumen Area reduction
Bipfane Angiography and FD-OCT: 3D reconstruction of LAD with BVS
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How improved scaffold technology can
improve safety and efficacy

Shortcomings Possible solution

O Low tensile strength, low radial * Increase tensile strength, good
force, recoil <> radial force -> thin strut (oriented
O thick strut, wide footprint PLLA, cold worked Magnesium)
* Circular strut
(single monofilament fiber)

* Easy to embed
* Less disturbance of laminar flow

O Quadratic strut
O Difficult to embed
O Disturb laminar flow

O Increase local viscosity and * Use of biodegradable material non-
thrombogenicity thrombogenic: Magnesium WE-43,

O Main determinant of neointimal Proprietary Mg alloy without rare
thickness and Lumen reduction earth elements

O Slow down the cell coverage * Circular strut

O Late structural discontinuity * Faster bioresorption (single
(dismantling) monofilament fiber, Magnesium)



Non-Newtonian (cell tracking)

shear stress and viscosity In early systole

Navier Stokes (ESS) and Quemada (viscosity) equations

* Pink fuzzy areas are regions
with low shear stress with high viscosity

Thondapu V et al, Serruys PW. Endothelial shear stress 5 years after implantation of a coronary bioresorbable
scaffold. Eur Heart J. 2018 Feb 2.[Epub ahead of print] 9




The effect of thick (150 pm), quadratic strut
on flow reversal, recirculation, fibrin deposition and
endothelial migration and coverage
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CIRCULAR STRUTS (mono fiber) PENETRATE INTO THE
VESSEL WALL BETTER THAN THE QUADRATIC STRUTS
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Circular strut design and reduced strut protrusion
reduce low-shear stress (dark blue) in Mirage
compared to the ~bsorb




How improved scaffold technology can
improve safety and efficacy

Shortcomings Possible solution

O Low tensile strength, low radial * Increase tensile strength, good
force, recoil <> radial force -> thin strut (oriented
O thick strut, wide footprint PLLA, cold worked Magnesium)
* Circular strut
(single monofilament fiber)

* Easy to embed
* Less disturbance of laminar flow

O Quadratic strut
O Difficult to embed
O Disturb laminar flow

O Increase local viscosity and * Use of biodegradable material non-
thrombogenicity thrombogenic: Magnesium WE-43,

O Main determinant of neointimal Proprietary Mg alloy without rare
thickness and LA reduction earth elements

O Slow down the cell coverage * Circular strut

O Late structural discontinuity * Faster bioresorption (single
(dismantling) monofilament fiber, Magnesium)



Comparison of Acute Thrombogenicity for Metallic and
Polymeric Bioabsorbable Scaffolds: Magmaris vs ABSORB

vs Orsiro in a Porcine Arteriovenous Shunt Model
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Waksman R et al. Circulation: Cardiovascular Interventions.
2017 Aug;10(8). e004762.

CD42b/CDB1 immunofluorescence
% of total scaffold surface area



Hybrid Design of Proprietary Cold worked Mg Alloy without rare
earth elements and with Dual-Helical connectors in PLGA:
125 pm Round Wire Struts

Embedment Mg
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How improved scaffold technology can
improve safety and efficacy

Shortcomings Possible solution

O Low tensile strength, low radial * Increase tensile strength, good
force, recoil <> radial force -> thin strut (oriented
O thick strut, wide footprint PLLA, cold worked Magnesium)
* Circular strut
(single monofilament fiber)

* Easy to embed
* Less disturbance of laminar flow

O Quadratic strut
O Difficult to embed
O Disturb laminar flow

O Increase local viscosity and * Use of biodegradable material non-
thrombogenicity thrombogenic: Magnesium WE-43,

O Main determinant of neointimal Proprietary Mg alloy without rare
thickness and LA reduction earth elements

O Slow down the cell coverage * Circular strut

O Late structural discontinuity * Faster bioresorption (single
(dismantling) monofilament fiber, Magnesium)



The rate of biodegradation has important
iImpact on bioresorption and dismantlin
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How to accelerate strut encapsulation in vessel wall and
avoid the transient consequence of discontinuity???

v Reducing the protrusion of the strut (stronger and
thinner strut) -done-

v'  Better embedment of the struts -done-

v Changing the quadratic shape of the strut into a
circular one -done-

v" Faster Bioresorption without inducing an
inflammatory vasculitis -major dilemma-

... Will result in fast tissue coverage and firm
encapsulation of the struts into the vessel wall.

There is room for progress!

18
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Bioresorbable
Scaffolds

From Basic Concept
to Clinical Applications
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Frequency of late discontinuities between 2 and 3 years

(truly serial analysis at lesion level)
-by courtesy of Prof. Kimura
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The rate of biodegradation has important
Impact on bioresorption and dismantling

ABSORB

MIRAGE
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Tenekecioglu E, Serruys PW. JACC Cardiovasc Interv. 2017 Jun 12;10(11):1115-1130.
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Back up slides
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INVERSE RELATIONSHIP BETWEEN STRUT PROTRUSION AND SHEAR STRESS
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INVERSE RELATIONSHIP SHEAR STRESS AND NEOINTIMAL THICKNESS

IN ABSORB BIORESORBABLE SCAFFOLD

Neointimal thickness (p)

~Case 3

n = 3528 (sector lal level) n = 9 (device level)

¥ = -40In(x) + 107 y = -20In(x) * 109

r=-0.455

r=-0.480

p<0.01

-— — -

éheaf; stress [Pé]

Neoi_ntimal ;hic:kngss (n)

Shear stress [Pal]




Late discontinuities of a scaffold in human on OCT 2D-3D
A Baseline - 1 year - 2 years
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Onuma, Serruys, et al. JACC Cardiovasc Interv. 2014;7(12):1400-11.
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Embedment depth stratified O
by underlying plaque type in Absorb Japan

Only Absorb BVS arm: L =79 / Strut N= 667
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Thick strut shear stress determinant of neointimal thickness and LA reduction

Biplane Angiography and FD-OCT (Terumo): 3D reconstruction of RCA with BVS
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Fusion of Angio and OCT, pulsatile flow, non-Newtonian shear stress

immediately after Absorb implantation in a human being
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The Nidus for Possible
Thrombus Formation:
Insight From the
Microenvironment of
Bioresorbable Vascular
Scaffold.

JACC Cardiovasc Interv.
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Assessment of the
hemodynamic
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Pulsaltile Non-Newtonian (cell tracking)

Shear stress and Viscosity in early systole

Navier Stokes (ESS) and Quemada (viscosity) equations

High Oscillatory Shear Index (OSI)

* Pink fuzzy areas are regions
with low shear stress and high viscosity

Thondapu V et al, Serruys PW. Endothelial shear stress 5 years after implantation of a coronary bioresorbable
scaffold. Eur Heart J. 2018 Feb 2.[Epub ahead of print] 31




Non-Newtonian (cell tracking)

shear stress and viscosity In early systole

Navier Stokes (ESS) and Quemada (viscosity) equations

Ulem/sj: -1 0 1 2 3 4 5 6 7 8 9 10

ESS=7 Pa

ESS=05Pa~
45

* Pink fuzzy areas are regions
with low shear stress with high viscosity

Thondapu V et al, Serruys PW. Endothelial shear stress 5 years after implantation of a coronary bioresorbable
scaffold. Eur Heart J. 2018 Feb 2.[Epub ahead of print] 32




Oriented polylactide, stronger and thinner strut
Reducing the protrusion without increase of recoil

ArterioSorb from Arterius Absorb BVS from Abbott
(Profile: 1.22 mm) (Profile: 1.43 mm)
Protrusion distance: 897 um Protrusion distance: 1509 pm

ArterioSorb-95 um

A:19.24+4.80 atm

After device deployment After post-dilatation (PD)y. 1542:4 56 atm
Devi
evice Mean lumen Acute PD Mean lumen Acute
Scaffold balloon- diameter recoil (%) balloon- diameter recoil (%)
artery ratio (mm) °l artery ratio (mm) ?
Arteriosorb-95 (n=25) 1.0940.11 2.87+0.30 4.6917.38 1.11+0.09 2.99+0.16 2.65+3.81
Xience (n=15) 1.12+0.11 2.94+0.17 2.70+4.52 1.14+0.10 3.06+0.13 1.06%4.13

Courtesy of Dr. Onuma, Rasha Al-Lamee, Guy Leclerc (AccelLAB, Montreal) 33



