Morning Roundtable Forum: Meet the Experts over Breakfast DES & New BRS

Can Improved Scaffold Technology Reduce Clinical Complications? -Insights and Speculation-

Patrick W. Serruys, MD PhD

Imperial College London, United Kingdom Norihiro Kogame, MD Yoshinobu Onuma, MD PhD

Professor of Cardiology of Imperial College

Emeritus Professor of Medicine

Erasmus MC

Dr. Honoris Causa in Biomedical Engineering

CARDIOVASCULAR SUMMIT

Sunday, April 29, 2018, 7:16 AM – 7:24 AM, Room 104, Level 1

How improved scaffold technology can improve safety and efficacy

Shortcomings	Possible solution
 Low tensile strength, low radial force, recoil <> thick strut, wide footprint 	 Increase tensile strength, good radial force -> thin strut (oriented PLLA, cold worked Magnesium)
 Quadratic strut Difficult to embed Disturb laminar flow 	 Circular strut (single monofilament fiber) Easy to embed Less disturbance of laminar flow
 Increase local viscosity and thrombogenicity Main determinant of neointimal thickness and Lumen reduction 	 Use of biodegradable material non- thrombogenic: Magnesium WE-43, Proprietary Mg alloy without rare earth elements
 Slow down the cell coverage 	Circular strut
 Late structural discontinuity (dismantling) 	 Faster bioresorption (single monofilament fiber, Magnesium)

How to increase tensile strength and radial force by altering molecular orientation of PLLA

- Tube wall thickness of < 95 µm and even < 75 microns can be achieved</p>
- Scaffold tube thickness comparable to metallic DES

How to increase tensile strength and radial force by altering molecular orientation of PLLA

Tube wall thickness of < 95 µm and even < 75 microns can be achieved</p>

Scaffold tube thickness comparable to metallic DES

Oriented polylactide, stronger and thinner strut Reducing the protrusion without increase of recoil

	After device depl	oyment	After post-dilatation (PD) ^{A: 19.24±4.80 atm}		
Scaffold	Device balloon-artery ratio		PD balloon-artery ratio	Acute recoil (%)	
Arteriosorb-95 (n=25)	1.09±0.11	4.69±7.38	1.11±0.09	2.65±3.81	
Xience (n=15)	1.12±0.11	2.70±4.52	1.14±0.10	1.06±4.13	

Courtesy of Dr. Onuma, Rasha Al-Lamee, Guy Leclerc (AccelLAB, Montreal) 5

Thin struts reduce struts protrusion, very low-shear stress (dark-blue color), risk of thrombus peri-strut and neointima

Tenekecioglu E, Torii R, Serruys PW et al. Non-Newtonian pulsatile shear stress assessment: a method to differentiate bioresorbable scaffold platforms. Eur Heart J 2017 Sep 1;38(33):2570.

Low Shear Stress generated by thick protruding strut is the main determinant of neointimal thickness and Lumen Area reduction

How improved scaffold technology can improve safety and efficacy

Shortcomings	Possible solution		
 Low tensile strength, low radial force, recoil <> thick strut, wide footprint 	 Increase tensile strength, good radial force -> thin strut (oriented PLLA, cold worked Magnesium) 		
 Quadratic strut Difficult to embed Disturb laminar flow 	 Circular strut (single monofilament fiber) Easy to embed Less disturbance of laminar flow 		
 Increase local viscosity and thrombogenicity Main determinant of neointimal thickness and Lumen reduction 	 Use of biodegradable material non- thrombogenic: Magnesium WE-43, Proprietary Mg alloy without rare earth elements 		
 Slow down the cell coverage 	Circular strut		
 Late structural discontinuity (dismantling) 	 Faster bioresorption (single monofilament fiber, Magnesium) 		

Non-Newtonian (cell tracking) shear stress and viscosity in early systole

Navier Stokes (ESS) and Quemada (viscosity) equations

Pink fuzzy areas are regions with low shear stress with high viscosity

European Heart Journal

Thondapu V et al, Serruys PW. Endothelial shear stress 5 years after implantation of a coronary bioresorbable scaffold. Eur Heart J. 2018 Feb 2. [Epub ahead of print] 9

The effect of thick (150 μ m), quadratic strut on flow reversal, recirculation, fibrin deposition and endothelial migration and coverage

Erasmus MC

40-72 hr

0-24 hr

Hsiao ST et al. Endothelial repair in stented arteries is accelerated by inhibition of Rho-associated protein kinase. Cardiovasc Res. 2016 Dec;112(3):689-701 10

CIRCULAR STRUTS (mono fiber) PENETRATE INTO THE VESSEL WALL BETTER THAN THE **QUADRATIC** STRUTS

$$p(\rho) = \frac{2\mu h}{\pi (1 - \nu) \sqrt{a^2 - \rho^2}}$$

Inverse relationship between contact radius and contact pressure

Mean Protrusion: 76 ± 25 µm

11

157 μm Circular strut design and reduced strut protrusion reduce low-shear stress (dark blue) in Mirage compared to the Absorb

EuroIntervention Tenekecioglu E, Serruys PW. EuroIntervention, 2016 Nov 20;12(10):1296

How improved scaffold technology can improve safety and efficacy

Shortcomings	Possible solution
 Low tensile strength, low radial force, recoil <> thick strut, wide footprint 	 Increase tensile strength, good radial force -> thin strut (oriented PLLA, cold worked Magnesium)
 Quadratic strut Difficult to embed Disturb laminar flow 	 Circular strut (single monofilament fiber) Easy to embed Less disturbance of laminar flow
 Increase local viscosity and thrombogenicity Main determinant of neointimal thickness and LA reduction 	 Use of biodegradable material non- thrombogenic: Magnesium WE-43, Proprietary Mg alloy without rare earth elements
 Slow down the cell coverage 	Circular strut
 Late structural discontinuity (dismantling) 	 Faster bioresorption (single monofilament fiber, Magnesium)

Comparison of Acute Thrombogenicity for Metallic and Polymeric Bioabsorbable Scaffolds: Magmaris vs ABSORB vs Orsiro in a Porcine Arteriovenous Shunt Model

A Magmaris

ABSORB

Orsiro

Waksman R et al. Circulation: Cardiovascular Interventions 2017 Aug;10(8). e004762

Hybrid Design of Proprietary Cold worked Mg Alloy without rare earth elements and with Dual-Helical connectors in PLGA: 125 µm Round Wire Struts

How improved scaffold technology can improve safety and efficacy

Shortcomings	Possible solution			
 Low tensile strength, low radial force, recoil <> thick strut, wide footprint 	 Increase tensile strength, good radial force -> thin strut (oriented PLLA, cold worked Magnesium) 			
 Quadratic strut Difficult to embed Disturb laminar flow 	 Circular strut (single monofilament fiber) Easy to embed Less disturbance of laminar flow 			
 Increase local viscosity and thrombogenicity Main determinant of neointimal thickness and LA reduction 	 Use of biodegradable material non- thrombogenic: Magnesium WE-43, Proprietary Mg alloy without rare earth elements 			
 Slow down the cell coverage 	Circular strut			
 Late structural discontinuity (dismantling) 	 Faster bioresorption (single monofilament fiber, Magnesium) 			

The rate of biodegradation has important impact on bioresorption and dismantling

Post-Procedure

MIRAGE

ABSORB

How to accelerate strut encapsulation in vessel wall and avoid the transient consequence of discontinuity???

- Reducing the protrusion of the strut (stronger and thinner strut) -done-
- Better embedment of the struts -done-
- Changing the quadratic shape of the strut into a circular one -done-
- Faster Bioresorption without inducing an inflammatory vasculitis -major dilemma-

... will result in fast tissue coverage and firm encapsulation of the struts into the vessel wall.

There is room for progress!

Bioresorbable Scaffolds

From Basic Concept to Clinical Applications

Yoshinobu Onuma | Patrick Serruys

456pp, 750 illustrations, eBook: 978-1-498-77977-7

RC Press

Faylor & Francis Group

Bioresorbable Scaffolds

Edited by:

Patrick W.J.C. Serruys, Imperial College, Erasmus University Yoshinobu Onuma, Erasmus University

TABLE OF CONTENTS:

- Introduction
- Principles of bioresorption, vascular application
- From bench test to preclinical assessment
- Lesson learned from
 preclinical assessment
- Imaging to evaluate the bioresorbable scaffold
- Clinical evidence of randomised and non randomised trials

- Clinical evidence in specific patient subsets personal perspective
- Complications (incidence, diagnosis, potential mechanisms and treatment)
- Tips and tricks to implant BRS
- Emerging technologies (Pre-CE mark, Pre FDA, pre PMDA and pre CFDA)

For more information visit: www.crcpress.com/9781498779746

Frequency of late discontinuities between 2 and 3 years (truly serial analysis at lesion level) -by courtesy of Prof. Kimura

* Two lesions were not analyzable at 3 years. # Eight lesions were not analyzable at 3 years.

21

The rate of biodegradation has important impact on bioresorption and dismantling

IJACC

MIRAGE

ABSORB

Tenekecioglu E, Serruys PW. JACC Cardiovasc Interv. 2017 Jun 12;10(11):1115-1130.

Back up slides

Disclosure Statement of Financial Interest

Patrick W. Serruys, MD. PhD.

Consulting fees and honoraria from:

Arterius, Biosensors, Medtronic, Micell Technologies, Sinomed, Philips/Volcano and Xeltis.

INVERSE RELATIONSHIP BETWEEN STRUT PROTRUSION AND SHEAR STRESS IN ABSORB BIORESORBABLE SCAFFOLD

INVERSE RELATIONSHIP SHEAR STRESS AND NEOINTIMAL THICKNESS IN ABSORB BIORESORBABLE SCAFFOLD

Onuma, Serruys, et al. JACC Cardiovasc Interv. 2014;7(12):1400-11. 27

Thick strut shear stress determinant of neointimal thickness and LA reduction

Fusion of Angio and OCT, pulsatile flow, non-Newtonian shear stress immediately after Absorb implantation in a human being

Tenekecioglu E, Poon E, et al. Serruys PW. **The Nidus for Possible Thrombus Formation: Insight From the Microenvironment of Bioresorbable Vascular** Scaffold. JACC Cardiovasc Interv. 2016 Oct 24;9(20): 2167-2168.

Tenekecioglu E, Serruys PW et al. Assessment of the hemodynamic characteristics of Absorb BVS in a porcine coronary artery model. Int J Cardiol. 2017 Jan 15; 227:467-473.

Pulsaltile Non-Newtonian (cell tracking) Shear stress and Viscosity in early systole

Navier Stokes (ESS) and Quemada (viscosity) equations

Pink fuzzy areas are regions with low shear stress and high viscosity

European Heart Journal

Thondapu V et al, Serruys PW. Endothelial shear stress 5 years after implantation of a coronary bioresorbable scaffold. Eur Heart J. 2018 Feb 2.[Epub ahead of print] 31

Non-Newtonian (cell tracking) shear stress and viscosity in early systole

Navier Stokes (ESS) and Quemada (viscosity) equations

Pink fuzzy areas are regions with low shear stress with high viscosity

European Heart Journal

Thondapu V et al, Serruys PW. Endothelial shear stress 5 years after implantation of a coronary bioresorbable scaffold. Eur Heart J. 2018 Feb 2.[Epub ahead of print] 32

Oriented polylactide, stronger and thinner strut Reducing the protrusion without increase of recoil

	After device deployment			After post-dilatation (PD) ^{A: 19.24±4.80 atm} X: 18.42±4.56 atm		
Scaffold	Device balloon- artery ratio	Mean lumen diameter (mm)	Acute recoil (%)	PD balloon- artery ratio	Mean lumen diameter (mm)	Acute recoil (%)
Arteriosorb-95 (n=25)	1.09±0.11	2.87±0.30	4.69±7.38	1.11±0.09	2.99±0.16	2.65±3.81
Xience (n=15)	1.12±0.11	2.94±0.17	2.70±4.52	1.14±0.10	3.06±0.13	1.06±4.13

Courtesy of Dr. Onuma, Rasha Al-Lamee, Guy Leclerc (AccelLAB, Montreal) 33