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How improved scaffold technology can 
improve safety and efficacy 

Shortcomings Possible solution 

o Low tensile strength, low radial 
force, recoil <> 

o thick strut, wide footprint 

• Increase tensile strength, good 
radial force -> thin strut (oriented 
PLLA, cold worked Magnesium) 

o Quadratic strut 
o Difficult to embed  
o Disturb laminar flow 

• Circular strut 
        (single monofilament fiber) 
• Easy to embed 
• Less disturbance of laminar flow 

o   Increase local viscosity and 
thrombogenicity 
o   Main determinant of neointimal 

thickness and Lumen reduction 

 

• Use of biodegradable material non-
thrombogenic: Magnesium WE-43, 
Proprietary Mg alloy without rare 
earth elements 

o Slow down the cell coverage • Circular strut 

o Late structural discontinuity 
(dismantling) 

• Faster bioresorption (single 
monofilament fiber, Magnesium) 
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 Tube wall thickness of < 95 µm and even < 75 microns can be achieved 

 Scaffold tube thickness comparable to metallic DES 

 

How to increase tensile strength and radial 
force by altering molecular orientation of PLLA 

Amorphous	polymer	tube.		

Semi-crystalline	polymer	
created	by	stretching	or	
drawing	the	fibers.	

	

Heated	Die	helps	
polymer	to	

become	plas c	

and	stretch.	
	

Laser	cu ng	of	
stent	(standard	
technology).	

	

Mandrel	forces	
tube	to	extrude.	
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Heated Die helps 

polymer to become 

plastic and stretch 

 

Semi-crystalline 

polymer created by 

stretching or 

drawing the fibers 

Amorphous polymer tube  

Mandrel 

forces tube 

to extrude 

Laser cutting of 

stent (standard 

technology) 

Extruded PLLA 

Absorb 

Oriented PLLA 
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Material PLLA 
Oriented 

PLLA 
Mg 

Alloy 
Stainless 

Steel  
Cobalt 

Chrome 

Ultimate 
tensile 

strength 
(MPa) 

~30-50 220-260 
  343* 

280 
670 820-1200 

Tensile 
Modulus 

(Gpa) 
1.2-3.0 5-7 45 193 243 

Elongation 
(%) 

2-6 40-70 23 48 35-55 

Extruded PLLA 

Oriented PLLA 
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How to increase tensile strength and radial 
force by altering molecular orientation of PLLA 

 Tube wall thickness of < 95 µm and even < 75 microns can be achieved 

 Scaffold tube thickness comparable to metallic DES 

 

Extruded PLLA 

Absorb 

4 

*cold worked 



ArterioSorb-95 µm 

Arteriosorb-120 

Absorb BVS-157 µm 

Oriented polylactide, stronger and thinner strut  
 Reducing the protrusion without increase of recoil 

ArterioSorb from Arterius 

(Profile: 1.22 mm) 

Protrusion distance: 89±7 µm 

Absorb BVS from Abbott 

(Profile: 1.43 mm) 

Protrusion distance: 150±9 µm 

Courtesy of Dr. Onuma, Rasha Al-Lamee, Guy Leclerc (AccelLAB, Montreal)  

After device deployment After post-dilatation (PD) 

Scaffold 
Device balloon-artery 

ratio 
Acute 

recoil (%) 
PD balloon-artery 

ratio 
Acute 

recoil (%) 

Arteriosorb-95 (n=25) 1.09±0.11 4.69±7.38 1.11±0.09 2.65±3.81 

Xience (n=15) 1.12±0.11 2.70±4.52 1.14±0.10 1.06±4.13 
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A: 19.24±4.80 atm 

X: 18.42±4.56 atm 



ArterioSorb 

Absorb BVS 

Tenekecioglu E, Torii R, Serruys PW et al. Non-Newtonian pulsatile shear stress 

assessment: a method to differentiate bioresorbable scaffold platforms. Eur Heart 

J 2017 Sep 1;38(33):2570. 
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95 µm 

157 µm 

y = -23.18ln(x) + 76.34
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ArterioSorb 

Absorb BVS 

Thin struts reduce struts protrusion, very low-shear stress 
(dark-blue color), risk of thrombus peri-strut and neointima 

Very 
Low 
EES 

Low 
EES 

Very 
Low 
EES 

Low 
EES 



LUMEN Surface 

Day 3 28D 90D 

Low Shear Stress generated by thick protruding strut is                                           
the main determinant of neointimal thickness and Lumen Area reduction 

Teneckecioglu, Serruys et al. JACC Cardiovasc Interv. 2016;9(20):2167-2168.  
Bourantas, Serruys et al. JACC Cardiovasc Interv. 2014;7:100-1.  

Logarithmic 
Relationship 
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Biplane Angiography and FD-OCT: 3D reconstruction of LAD with BVS 



How improved scaffold technology can 
improve safety and efficacy 

Shortcomings Possible solution 

o Low tensile strength, low radial 
force, recoil <> 

o thick strut, wide footprint 

• Increase tensile strength, good 
radial force -> thin strut (oriented 
PLLA, cold worked Magnesium) 

o Quadratic strut 
o Difficult to embed  
o Disturb laminar flow 

• Circular strut 
        (single monofilament fiber) 
• Easy to embed 
• Less disturbance of laminar flow 

o   Increase local viscosity and 
thrombogenicity 
o   Main determinant of neointimal 

thickness and Lumen reduction 

 

• Use of biodegradable material non-
thrombogenic: Magnesium WE-43, 
Proprietary Mg alloy without rare 
earth elements 

o Slow down the cell coverage • Circular strut 

o Late structural discontinuity 
(dismantling) 

• Faster bioresorption (single 
monofilament fiber, Magnesium) 
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Non-Newtonian (cell tracking) 
shear stress and viscosity in early systole 

• Pink fuzzy areas are regions 

with low shear stress with high viscosity 

Flow Direction 
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Thondapu V et al, Serruys PW. Endothelial shear stress 5 years after implantation of a coronary bioresorbable 

scaffold. Eur Heart J. 2018 Feb 2.[Epub ahead of print]  

Navier Stokes (ESS) and Quemada (viscosity) equations 



The effect of thick (150 µ m), quadratic strut                                  
on flow reversal, recirculation, fibrin deposition and   
endothelial migration and coverage 

Hsiao ST et al. Endothelial repair in stented arteries is accelerated by inhibition of 

Rho-associated protein kinase. Cardiovasc Res. 2016 Dec;112(3):689-701 

0-24 hr 40-72 hr 

Circular 
strut 

(next slide) 
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Inverse relationship between 
contact radius and contact pressure 

CIRCULAR STRUTS (mono fiber) PENETRATE INTO THE 
VESSEL WALL BETTER THAN THE QUADRATIC STRUTS 

Mean Protrusion: 125 ± 29 µm Mean Protrusion: 76 ± 25 µm 

157 
µm 

125 
µm 
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Circular strut design and reduced strut protrusion 
reduce low-shear stress (dark blue) in Mirage 

compared to the Absorb 

Tenekecioglu E, Serruys PW. EuroIntervention, 2016 Nov 20;12(10):1296 



How improved scaffold technology can 
improve safety and efficacy 

Shortcomings Possible solution 

o Low tensile strength, low radial 
force, recoil <> 

o thick strut, wide footprint 

• Increase tensile strength, good 
radial force -> thin strut (oriented 
PLLA, cold worked Magnesium) 

o Quadratic strut 
o Difficult to embed  
o Disturb laminar flow 

• Circular strut 
        (single monofilament fiber) 
• Easy to embed 
• Less disturbance of laminar flow 

o   Increase local viscosity and 
thrombogenicity 
o   Main determinant of neointimal 

thickness and LA reduction 

 

• Use of biodegradable material non-
thrombogenic: Magnesium WE-43, 
Proprietary Mg alloy without rare 
earth elements 

o Slow down the cell coverage • Circular strut 

o Late structural discontinuity 
(dismantling) 

• Faster bioresorption (single 
monofilament fiber, Magnesium) 
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Comparison of Acute Thrombogenicity for Metallic and 
Polymeric Bioabsorbable Scaffolds: Magmaris vs ABSORB 

vs Orsiro in a Porcine Arteriovenous Shunt Model  

Waksman R et al. Circulation: Cardiovascular Interventions. 
2017 Aug;10(8). e004762.  14 
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µCT scaffold in 
Tapered & 
Angulated  
Mock Artery 

Hybrid Design of Proprietary Cold worked Mg Alloy without rare 
earth elements and with Dual-Helical connectors in PLGA:            
125 µ m Round Wire Struts 

Embedment  Mg 
vs. ABSORB    
(TO SCALE) 

 =125 

2.8 mm 

4.2 mm 

Ultimate tensile strength 

343 MPa 

125 157 

Dual-helical 

connectors 

in PLGA 



How improved scaffold technology can 
improve safety and efficacy 

Shortcomings Possible solution 

o Low tensile strength, low radial 
force, recoil <> 

o thick strut, wide footprint 

• Increase tensile strength, good 
radial force -> thin strut (oriented 
PLLA, cold worked Magnesium) 

o Quadratic strut 
o Difficult to embed  
o Disturb laminar flow 

• Circular strut 
        (single monofilament fiber) 
• Easy to embed 
• Less disturbance of laminar flow 

o   Increase local viscosity and 
thrombogenicity 
o   Main determinant of neointimal 

thickness and LA reduction 

 

• Use of biodegradable material non-
thrombogenic: Magnesium WE-43, 
Proprietary Mg alloy without rare 
earth elements 

o Slow down the cell coverage • Circular strut 

o Late structural discontinuity 
(dismantling) 

• Faster bioresorption (single 
monofilament fiber, Magnesium) 
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Post-Procedure 6-Month Follow-up 12-Month Follow-up 

A
B

S
O

R
B

 
M

IR
A

G
E

 
The rate of biodegradation has important 
impact on bioresorption and dismantling 

17 Tenekecioglu E, Serruys PW. JACC Cardiovasc Interv. 2017 Jun 12;10(11):1115-1130. 



How to accelerate strut encapsulation in vessel wall and 
avoid the transient consequence of discontinuity??? 

 Reducing the protrusion of the strut (stronger and 
thinner strut) 

 
 Better embedment of the struts 

 
  Changing the quadratic shape of the strut into a 

circular one 
 

  Faster Bioresorption without inducing an 
inflammatory vasculitis 
 

… will result in fast tissue coverage and firm 
encapsulation of the struts into the vessel wall. 

-done- 

-done- 

-done- 

-major dilemma- 

There is room for progress! 
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PW Serruys 

A. Ooi F Gijsen P Barlis 

C Bourantas R Torii V Thondapu E Poon 

Y Onuma C Collet 

E Tenekecioglu 

P Kitslaar 

THANKS… 

H Jonker 
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Covered 
and 

Apposed 

Covered 
and 

Apposed 

Covered 
and 

Malapposed 

Covered 
and 

Malapposed 

Uncovered 
and 

Apposed 

Uncovered 
and 

Apposed 

Uncovered 
and 

Malapposed 

Uncovered 
and 

Malapposed 

No 
Discontinuity 

No 
Discontinuity 

L=1 

L=2 

L=1 

L=2 

L=4 

2 years 3 years 

L=3* 

L=3 

L=1 

L=12 

L=59# 

L=10 

L=1 

L=1 

L=24 

L=32 

* Two lesions were not analyzable at 3 years. 

Frequency of late discontinuities between 2 and 3 years 
(truly serial analysis at lesion level)  

-by courtesy of Prof. Kimura 

# Eight lesions were not analyzable at 3 years. 
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Post-Procedure 6-Month Follow-up 12-Month Follow-up 

A
B

S
O

R
B

 
M

IR
A

G
E

 
The rate of biodegradation has important 
impact on bioresorption and dismantling 

22 Tenekecioglu E, Serruys PW. JACC Cardiovasc Interv. 2017 Jun 12;10(11):1115-1130. 
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Back up slides 
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INVERSE RELATIONSHIP BETWEEN STRUT PROTRUSION AND SHEAR STRESS 
IN ABSORB BIORESORBABLE SCAFFOLD 

INVERSE RELATIONSHIP  SHEAR STRESS AND NEOINTIMAL THICKNESS                        
IN ABSORB BIORESORBABLE SCAFFOLD 

Shear stress [Pa] Shear stress [Pa] 
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Late discontinuities of a scaffold in human on OCT 2D-3D 
Baseline - 1 year - 2 years 

Onuma, Serruys, et al. JACC Cardiovasc Interv. 2014;7(12):1400-11.  

22% 

42% 

*Non-truly serial 

Overhanging 
strut 
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(μm) 
Only Absorb BVS arm: L = 79 / Strut N= 667 

E
m
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d
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Normal  
vessel 

Fibrous 
plaque 

Fibrocalcific 
plaque 

Fibroatheroma 

N = 138 N = 320 N = 37 N = 172 

58.9± 54.3 73.3± 59.6 -3.1± 61.6 59.7± 51.1 
p < 0.001 
(ANOVA) 

Embedment depth stratified  
by underlying plaque type in Absorb Japan 

157 μm* 

*strut thickness of BVS 

A B C D 

Sotomi Y, Serruys PW  et al. Circ J. 2016;80(11):2317-2326. 
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RCA, patient 1023 

RCA, Patient ID 

100353-006 

  

LUMEN Surface 

Day 3 28D 90D 

150 

89 

Thick strut shear stress determinant of neointimal thickness and LA reduction 

Bourantas, Serruys et al. JACC Cardiovasc Interv. 2014;7:100-1.  29 

Logarithmic 
Relationship 



Tenekecioglu E, Poon E, 

et al. Serruys PW. 

The Nidus for Possible 

Thrombus Formation: 

Insight From the 

Microenvironment of 

Bioresorbable Vascular 

Scaffold. 

JACC Cardiovasc Interv. 

2016 Oct 24;9(20): 2167-

2168. 

 

Tenekecioglu E, Serruys 

PW et al.  

Assessment of the 

hemodynamic 

characteristics of Absorb 

BVS in a porcine coronary 

artery model. 

Int J Cardiol. 2017 Jan 15; 

227:467-473. 

Fusion of Angio and OCT, pulsatile flow, non-Newtonian  shear stress 
immediately after Absorb implantation in a human being  
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Pulsaltile Non-Newtonian (cell tracking) 
Shear stress and Viscosity in early systole 

• Pink fuzzy areas are regions 

with low shear stress and  high viscosity 

 
High Oscillatory Shear Index (OSI) 

 

Flow Direction 
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Thondapu V et al, Serruys PW. Endothelial shear stress 5 years after implantation of a coronary bioresorbable 

scaffold. Eur Heart J. 2018 Feb 2.[Epub ahead of print]  

Navier Stokes (ESS) and Quemada (viscosity) equations 



Non-Newtonian (cell tracking) 
shear stress and viscosity in early systole 

• Pink fuzzy areas are regions 

with low shear stress with high viscosity 

 
High Oscillatory Shear Index (OSI) 

 

Flow Direction 
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Thondapu V et al, Serruys PW. Endothelial shear stress 5 years after implantation of a coronary bioresorbable 

scaffold. Eur Heart J. 2018 Feb 2.[Epub ahead of print]  

Navier Stokes (ESS) and Quemada (viscosity) equations 



ArterioSorb-95 µm 

Arteriosorb-120 

Absorb BVS-157 µm 

Oriented polylactide, stronger and thinner strut  
 Reducing the protrusion without increase of recoil 

ArterioSorb from Arterius 

(Profile: 1.22 mm) 

Protrusion distance: 89±7 µm 

Absorb BVS from Abbott 

(Profile: 1.43 mm) 

Protrusion distance: 150±9 µm 

Courtesy of Dr. Onuma, Rasha Al-Lamee, Guy Leclerc (AccelLAB, Montreal)  

After device deployment After post-dilatation (PD) 

Scaffold 

Device 
balloon-

artery ratio 

Mean lumen 
diameter 

(mm) 

Acute 
recoil (%) 

PD 
balloon-

artery ratio 

Mean lumen 
diameter 

(mm) 

Acute 
recoil (%) 

Arteriosorb-95 (n=25) 1.09±0.11 2.87±0.30 4.69±7.38 1.11±0.09 2.99±0.16 2.65±3.81 

Xience (n=15) 1.12±0.11 2.94±0.17 2.70±4.52 1.14±0.10 3.06±0.13 1.06±4.13 
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A: 19.24±4.80 atm 

X: 18.42±4.56 atm 


